Thei	rmal Condu	ıctivity		
Material	Thermal conductivity (cal/sec)/(cm^2 C/cm)	Thermal conductivity (W/m K)*		
Silver	1.01	406.0		
Copper	0.99	385.0		
Brass	•••	109.0		
Aluminum	0.50	205.0		
Iron	0.163			
Steel	•••	50.2		
Lead	0.083	34.7		
Mercury		8.3		Index Tables Reference
Ice	0.005	1.6		
Glass, ordinary	0.0025	· 0.8		
Concrete	0.002	0.8		
Water at 20 C	0.0014			
Asbestos	0.0004			
Hydrogen at 0 C	0.0004	0.14		
Helium at 0 C	0.0003	0.14		Young Ch 15.
Oxygen	•••	0.023		
Snow (dry)	0.00026			
Fiberglass	0.00015	0.04		
Brick,insulating		0.15		
Brick, red		0.6		
Cork board	0.00011	0.04		
Wool felt	0.0001	0.04		
Rock wool	•••	0.04		
Styrofoam		0.01		
Wood	0.0001	0.12-0.04		
Air at 0 C	0.000057	0.024		
Heat con	ngh D., University Physiduction discussion emperature and Therma			
TyperPhysics***** Th	perPhysics**** Thermodynamics			

Wiedemann-Franz Ratio

The ratio between thermal and electrical conductivities of metals can be expressed in terms of the ratio:

$$L = \frac{\kappa}{\sigma T} = \frac{\pi^2 k^2}{3e^2} = 2.45 \times 10^{-8} W\Omega / K^2$$

which may be called the Wiedemann-Franz Ratio or the Lorenz constant.

Metal $\kappa/\sigma T (10^{-8} W\Omega/K^2)$ 2.23 Cu 2.31 Ag Au 2.35 Zn 2.31 Cd2.42 Sn 2.52 Mo 2.61 Pb 2.47 2.51

Heat conduction discussion

Wiedemann-Franz Law

HyperPhysics***** Thermodynamics

<u>Index</u>

Tables

Reference
Blatt
Section
13.2

Go Back

WORLD OF PHYSICS

Thermal Conductivity

WORLD OF PHYSICS

- O Astrophysics
- **a** Electromagnetism
- Experimental Physics
- **Privid Mechanics**
- ö History and Terminology
- **⊘** Mechanics
- **O Modern Physics**
- D Optics
- States of Matter
- Thermodynamics
- O Units & Dimensional Analysis
- **Wave Motion**

Thermal conductivity is defined by

$$k \equiv \rho c_P \kappa$$
,

where c_P is the <u>heat capacity</u> and κ is the <u>thermal diffusivity</u>. In cgs, thermal conductivity is measured in erg cm⁻¹ K⁻¹ s⁻¹. For <u>air</u> (in MKS),

$$k_{\rm air} = 0.03 \text{ W m}^{-1} \text{ K}^{-1}$$
.

SEE ALSO: Electrical Conductivity, Thermal Diffusivity

Eric W. Weisstein

ALPHABETICAL INDEX &

O ABOUT THIS SITE

O FAQs

WHAT'S NEW

O RANDOM ENTRY

3 BE A CONTRIBUTOR

O SIGN THE GUESTBOOK

S EMAIL COMMENTS

ERIC'S OTHER SITES &

Related Wolfram Research Products Include:

Addition (Center Addition Center Addition Cent